Integrable deformations of superintegrable quantum circuits (2205.02038v5)
Abstract: Superintegrable models are very special dynamical systems: they possess more conservation laws than what is necessary for complete integrability. This severely constrains their dynamical processes, and it often leads to their exact solvability, even in non-equilibrium situations. In this paper we consider special Hamiltonian deformations of superintegrable quantum circuits. The deformations break superintegrability, but they preserve integrability. We focus on a selection of concrete models and show that for each model there is an (at least) one parameter family of integrable deformations. Our most interesting example is the so-called Rule54 model. We show that the model is compatible with a one parameter family of Yang-Baxter integrable spin chains with six-site interaction. Therefore, the Rule54 model does not have a unique integrability structure, instead it lies at the intersection of a family of quantum integrable models.
- B. Sutherland, Beautiful Models. World Scientific Publishing Company, 2004.
- Cambridge University Press, 1993.
- J. Miller, Willard, S. Post, and P. Winternitz, “Classical and quantum superintegrability with applications,” J. Phys. A 46 (2013) no. 42, 423001, arXiv:1309.2694 [math-ph].
- J.-S. Caux and J. Mossel, “Remarks on the notion of quantum integrability,” J. Stat. Mech. 2011 (2011) 02023, arXiv:1012.3587 [cond-mat.str-el].
- A. Bobenko, M. Bordemann, C. Gunn, and U. Pinkall, “On two integrable cellular automata,” Comm. Math. Phys. 158 (1993) no. 1, 127 – 134.
- B. Buča, K. Klobas, and T. Prosen, “Rule 54: Exactly solvable model of nonequilibrium statistical mechanics,” J. Stat. Mech. 2021 (2021) no. 7, 074001, arXiv:2103.16543 [cond-mat.stat-mech].
- K. Klobas, M. Medenjak, T. Prosen, and M. Vanicat, “Time-dependent matrix product ansatz for interacting reversible dynamics,” Comm. Math. Phys. 371 (2019) no. 2, 651–688, arXiv:1807.05000.
- V. Alba, J. Dubail, and M. Medenjak, “Operator Entanglement in Interacting Integrable Quantum Systems: The Case of the Rule 54 Chain,” Phys. Rev. Lett. 122 (2019) no. 25, 250603, arXiv:1901.04521 [cond-mat.stat-mech].
- K. Klobas, B. Bertini, and L. Piroli, “Exact Thermalization Dynamics in the “Rule 54” Quantum Cellular Automaton,” Phys. Rev. Lett. 126 (2021) 160602, arXiv:2012.12256 [cond-mat.stat-mech].
- K. Klobas and B. Bertini, “Exact relaxation to Gibbs and non-equilibrium steady states in the quantum cellular automaton Rule 54,” SciPost Phys. 11 (2021) 106, arXiv:2104.04511 [cond-mat.stat-mech].
- S. Gopalakrishnan, “Operator growth and eigenstate entanglement in an interacting integrable Floquet system,” Phys. Rev. B 98 (2018) no. 6, 060302, arXiv:1806.04156 [cond-mat.stat-mech].
- A. J. Friedman, S. Gopalakrishnan, and R. Vasseur, “Integrable Many-Body Quantum Floquet-Thouless Pumps,” Phys. Rev. Lett. 123 (2019) 170603, arXiv:1905.03265 [cond-mat.stat-mech].
- M. Medenjak, G. Policastro, and T. Yoshimura, “Thermal transport in TT¯𝑇¯𝑇T\bar{T}italic_T over¯ start_ARG italic_T end_ARG-deformed conformal field theories: from integrability to holography,” Phys. Rev. D 103 (2020) no. 6, , arXiv:2010.15813 [cond-mat.stat-mech]. http://dx.doi.org/10.1103/PhysRevD.103.066012.
- T. Prosen, “Reversible Cellular Automata as Integrable Interactions Round-a-Face: Deterministic, Stochastic, and Quantized,” arXiv e-prints (2021) , arXiv:2106.01292 [cond-mat.stat-mech].
- L. D. Faddeev, “How Algebraic Bethe Ansatz works for integrable model,” arXiv e-prints (1996) , arXiv:hep-th/9605187 [hep-th].
- T. Gombor and B. Pozsgay, “Integrable spin chains and cellular automata with medium-range interaction,” Phys. Rev. E 104 (2021) no. 5, 054123, arXiv:2108.02053 [nlin.SI].
- K. Klobas and T. Prosen, “Space-like dynamics in a reversible cellular automaton,” SciPost Phys Core 2 (2020) no. 2, , arXiv:2004.01671 [cond-mat.stat-mech].
- B. Bertini, P. Kos, and T. Prosen, “Exact Correlation Functions for Dual-Unitary Lattice Models in 1+1 Dimensions,” Phys. Rev. Lett. 123 (2019) no. 21, , arXiv:1904.02140 [cond-mat.stat-mech].
- G. Giudice, G. Giudici, M. Sonner, J. Thoenniss, A. Lerose, D. A. Abanin, and L. Piroli, “Temporal Entanglement, Quasiparticles, and the Role of Interactions,” Phys. Rev. Lett. 128 (2022) no. 22, , arXiv:2112.14264 [cond-mat.stat-mech].
- V. Gritsev and A. Polkovnikov, “Integrable Floquet dynamics,” SciPost Phys. 2 (2017) no. 3, 021, arXiv:1701.05276 [cond-mat.stat-mech].
- M. Vanicat, L. Zadnik, and T. Prosen, “Integrable Trotterization: Local Conservation Laws and Boundary Driving,” Phys. Rev. Lett. 121 (2018) no. 3, 030606, arXiv:1712.00431 [cond-mat.stat-mech].
- B. Bertini, P. Kos, and T. Prosen, “Operator Entanglement in Local Quantum Circuits II: Solitons in Chains of Qubits,” SciPost Phys. 8 (2020) no. 4, 068, arXiv:1909.07410 [cond-mat.stat-mech].
- T. Gombor and B. Pozsgay, “Superintegrable cellular automata and dual unitary gates from Yang-Baxter maps,” SciPost Phys. 12 (2022) 102, arXiv:2112.01854 [cond-mat.stat-mech].
- M. Borsi and B. Pozsgay, “Construction and the ergodicity properties of dual unitary quantum circuits,” Phys. Rev. B 106 (2022) 014302, arXiv:2201.07768 [quant-ph].
- L. Piroli, B. Bertini, J. I. Cirac, and T. Prosen, “Exact dynamics in dual-unitary quantum circuits,” Phys. Rev. B 101 (2020) no. 9, 094304, arXiv:1911.11175 [cond-mat.stat-mech].
- B. Pozsgay, A. Hutsalyuk, L. Pristyák, and G. Takács, “Sub-lattice entanglement in an exactly solvable anyon-like spin ladder,” Phys. Rev. E 106 (2022) no. 4, 044120, arXiv:2205.01465 [cond-mat.stat-mech].
- S. Santra, A. Agarwala, and S. Bhattacharjee, “Statistics-tuned entanglement of the boundary modes in coupled Su-Schrieffer-Heeger chains,” Phys. Rev. B 103 (2021) no. 19, 195134, arXiv:2010.07327 [cond-mat.str-el].
- P. P. Kulish, “Factorization of the classical and the quantum S matrix and conservation laws,” Theor Math Phys 26 (1976) 132.
- B. Pozsgay, T. Gombor, and A. Hutsalyuk, “Integrable hard rod deformation of the Heisenberg spin chains,” Phys. Rev. E 104 (2021) no. 6, , arXiv:2108.13724 [cond-mat.stat-mech].
- P. Fendley, “Free fermions in disguise,” Journal of Physics A Mathematical General 52 (2019) no. 33, 335002, arXiv:1901.08078 [cond-mat.stat-mech].
- S. J. Elman, A. Chapman, and S. T. Flammia, “Free fermions behind the disguise,” Commun. Math. Phys. 388 (2021) 969–1003, arXiv:2012.07857 [quant-ph].
- Y. Stroganov, “LETTER TO THE EDITOR: The importance of being odd,” J. Phys. A 34 (2001) no. 13, L179–L185, arXiv:cond-mat/0012035 [cond-mat.stat-mech].
- B. Pozsgay, “A Yang-Baxter integrable cellular automaton with a four site update rule,” J. Phys. A 54 (2021) 384001, 2106.00696 [cond-mat.stat-mech].
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.