2000 character limit reached
Squared distance matrices of trees with matrix weights (2205.01734v1)
Published 3 May 2022 in math.CO
Abstract: Let $T$ be a tree on $n$ vertices whose edge weights are positive definite matrices of order $s$. The squared distance matrix of $T$, denoted by $\Delta$, is the $ns \times ns$ block matrix with $\Delta_{ij}=d(i,j)2$, where $d(i,j)$ is the sum of the weights of the edges in the unique $(i,j)$-path. In this article, we obtain a formula for the determinant of $\Delta$ and find ${\Delta}{-1}$ under some conditions.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.