Strong Stationarity Conditions for Optimal Control Problems Governed by a Rate-Independent Evolution Variational Inequality (2205.01196v2)
Abstract: We prove strong stationarity conditions for optimal control problems that are governed by a prototypical rate-independent evolution variational inequality, i.e., first-order necessary optimality conditions in the form of a primal-dual multiplier system that are equivalent to the purely primal notion of Bouligand stationarity. Our analysis relies on recent results on the Hadamard directional differentiability of the scalar stop operator and a new concept of temporal polyhedricity that generalizes classical ideas of Mignot. The established strong stationarity system is compared with known optimality conditions for optimal control problems governed by elliptic obstacle-type variational inequalities and stationarity systems obtained by regularization.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.