Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fourfolds of Weil type and the spinor map (2205.00483v2)

Published 1 May 2022 in math.AG

Abstract: Recent papers by Markman and O'Grady give, besides their main results on the Hodge conjecture and on hyperkaehler varieties, surprising and explicit descriptions of families of abelian fourfolds of Weil type with trivial discriminant. They also provide a new perspective on the well-known fact that these abelian varieties are Kuga Satake varieties for certain weight two Hodge structures of rank six. In this paper we give a pedestrian introduction to these results. The spinor map, which is defined using a half-spin representation of SO(8), is used intensively. For simplicity, we use basic representation theory and we avoid the use of triality.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.