Fourfolds of Weil type and the spinor map (2205.00483v2)
Abstract: Recent papers by Markman and O'Grady give, besides their main results on the Hodge conjecture and on hyperkaehler varieties, surprising and explicit descriptions of families of abelian fourfolds of Weil type with trivial discriminant. They also provide a new perspective on the well-known fact that these abelian varieties are Kuga Satake varieties for certain weight two Hodge structures of rank six. In this paper we give a pedestrian introduction to these results. The spinor map, which is defined using a half-spin representation of SO(8), is used intensively. For simplicity, we use basic representation theory and we avoid the use of triality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.