Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Characterization of modulation spaces by symplectic representations and applications to Schrödinger equations (2204.14124v3)

Published 29 Apr 2022 in math.FA

Abstract: In the last twenty years modulation spaces, introduced by H. G. Feichtinger in 1983, have been successfully addressed to the study of signal analysis, PDE's, pseudodifferential operators, quantum mechanics, by hundreds of contributions. In 2011 M. de Gosson showed that the time-frequency representation Short-time Fourier Transform (STFT), which is the tool to define modulation spaces, can be replaced by the Wigner distribution. This idea was further generalized to $\tau$-Wigner representations in [9]. In this paper time-frequency representations are viewed as images of symplectic matrices via metaplectic operators. This new perspective highlights that the protagonists of time-frequency analysis are metaplectic operators and symplectic matrices $\mathcal{A} \in Sp(2d,\mathbb{R})$. We find conditions on $\mathcal{A}$ for which the related symplectic time-frequency representation $W_\mathcal{A}$ can replace the STFT and give equivalent norms for weighted modulation spaces. In particular, we study the case of covariant matrices $\mathcal{A}$, i.e., their corresponding $W_\mathcal{A}$ are members of the Cohen class. Finally, we show that symplectic time-frequency representations $W_\mathcal{A}$ can be efficiently employed in the study of Schr\"{o}dinger equations. This new approach may have further applications in quantum mechanics and PDE's.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.