Papers
Topics
Authors
Recent
Search
2000 character limit reached

Emotion Recognition In Persian Speech Using Deep Neural Networks

Published 28 Apr 2022 in cs.SD, cs.AI, and eess.AS | (2204.13601v2)

Abstract: Speech Emotion Recognition (SER) is of great importance in Human-Computer Interaction (HCI), as it provides a deeper understanding of the situation and results in better interaction. In recent years, various machine learning and Deep Learning (DL) algorithms have been developed to improve SER techniques. Recognition of the spoken emotions depends on the type of expression that varies between different languages. In this paper, to further study important factors in the Farsi language, we examine various DL techniques on a Farsi/Persian dataset, Sharif Emotional Speech Database (ShEMO), which was released in 2018. Using signal features in low- and high-level descriptions and different deep neural networks and machine learning techniques, Unweighted Accuracy (UA) of 65.20% and Weighted Accuracy (WA) of 78.29% are achieved.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.