Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

A stochastic analysis approach to lattice Yang--Mills at strong coupling (2204.12737v1)

Published 27 Apr 2022 in math.PR, math-ph, and math.MP

Abstract: We develop a new stochastic analysis approach to the lattice Yang--Mills model at strong coupling in any dimension $d>1$, with t' Hooft scaling $\beta N$ for the inverse coupling strength. We study their Langevin dynamics, ergodicity, functional inequalities, large $N$ limits, and mass gap. Assuming $|\beta| < \frac{N-2}{32(d-1)N}$ for the structure group $SO(N)$, or $|\beta| < \frac{1}{16(d-1)}$ for $SU(N)$, we prove the following results. The invariant measure for the corresponding Langevin dynamic is unique on the entire lattice, and the dynamic is exponentially ergodic under a Wasserstein distance. The finite volume Yang--Mills measures converge to this unique invariant measure in the infinite volume limit, for which Log-Sobolev and Poincar\'e inequalities hold. These functional inequalities imply that the suitably rescaled Wilson loops for the infinite volume measure has factorized correlations and converges in probability to deterministic limits in the large $N$ limit, and correlations of a large class of observables decay exponentially, namely the infinite volume measure has a strictly positive mass gap. Our method improves earlier results or simplifies the proofs, and provides some new perspectives to the study of lattice Yang--Mills model.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.