A note on graph drawings with star-shaped boundaries in the plane (2204.10831v1)
Abstract: In this note, we propose a straightforward method to produce an straight-line embedding of a planar graph where one face of a graph is fixed in the plane as a star-shaped polygon. It is based on minimizing discrete Dirichlet energies, following the idea of Tutte's embedding theorem. We will call it a geodesic triangulation of the star-shaped polygon. Moreover, we study the homotopy property of spaces of all straight-line embeddings. We give a simple argument to show that this space is contractible if the boundary is a non-convex quadrilateral. We conjecture that the same statement holds for general star-shaped polygons.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.