Papers
Topics
Authors
Recent
Search
2000 character limit reached

SciTS: A Benchmark for Time-Series Databases in Scientific Experiments and Industrial Internet of Things

Published 20 Apr 2022 in cs.DB, astro-ph.IM, cs.PF, and hep-ex | (2204.09795v2)

Abstract: Time-series data has an increasingly growing usage in Industrial Internet of Things (IIoT) and large-scale scientific experiments. Managing time-series data needs a storage engine that can keep up with their constantly growing volumes while providing an acceptable query latency. While traditional ACID databases favor consistency over performance, many time-series databases with novel storage engines have been developed to provide better ingestion performance and lower query latency. To understand how the unique design of a time-series database affects its performance, we design SciTS, a highly extensible and parameterizable benchmark for time-series data. The benchmark studies the data ingestion capabilities of time-series databases especially as they grow larger in size. It also studies the latencies of 5 practical queries from the scientific experiments use case. We use SciTS to evaluate the performance of 4 databases of 4 distinct storage engines: ClickHouse, InfluxDB, TimescaleDB, and PostgreSQL.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.