Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Class group statistics for torsion fields generated by elliptic curves (2204.09757v2)

Published 20 Apr 2022 in math.NT

Abstract: For a prime $p$ and a rational elliptic curve $E_{/\mathbb{Q}}$, set $K=\mathbb{Q}(E[p])$ to denote the torsion field generated by $E[p]:=\operatorname{ker}{E\xrightarrow{p} E}$. The class group $\operatorname{Cl}K$ is a module over $\operatorname{Gal}(K/\mathbb{Q})$. Given a fixed odd prime number $p$, we study the average non-vanishing of certain Galois stable quotients of the mod-$p$ class group $\operatorname{Cl}_K/p\operatorname{Cl}_K$. Here, $E$ varies over rational elliptic curves, ordered according to \emph{height}. Our results are conditional and rely on predictions made by Delaunay and Poonen-Rains for the statistical variation of the $p$-primary parts of Tate-Shafarevich groups of elliptic curves. We also prove results in the case when the elliptic curve $E{/\mathbb{Q}}$ is fixed and the prime $p$ is allowed to vary.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube