Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

6GCVAE: Gated Convolutional Variational Autoencoder for IPv6 Target Generation (2204.09425v1)

Published 20 Apr 2022 in cs.NI and cs.AI

Abstract: IPv6 scanning has always been a challenge for researchers in the field of network measurement. Due to the considerable IPv6 address space, while recent network speed and computational power have been improved, using a brute-force approach to probe the entire network space of IPv6 is almost impossible. Systems are required an algorithmic approach to generate more possible active target candidate sets to probe. In this paper, we first try to use deep learning to design such IPv6 target generation algorithms. The model effectively learns the address structure by stacking the gated convolutional layer to construct Variational Autoencoder (VAE). We also introduce two address classification methods to improve the model effect of the target generation. Experiments indicate that our approach 6GCVAE outperformed the conventional VAE models and the state-of-the-art target generation algorithm in two active address datasets.

Citations (16)

Summary

We haven't generated a summary for this paper yet.