Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential Point Clouds: A Survey (2204.09337v2)

Published 20 Apr 2022 in cs.CV

Abstract: Point cloud has drawn more and more research attention as well as real-world applications. However, many of these applications (e.g. autonomous driving and robotic manipulation) are actually based on sequential point clouds (i.e. four dimensions) because the information of the static point cloud data could provide is still limited. Recently, researchers put more and more effort into sequential point clouds. This paper presents an extensive review of the deep learning-based methods for sequential point cloud research including dynamic flow estimation, object detection & tracking, point cloud segmentation, and point cloud forecasting. This paper further summarizes and compares the quantitative results of the reviewed methods over the public benchmark datasets. Finally, this paper is concluded by discussing the challenges in the current sequential point cloud research and pointing out insightful potential future research directions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.