Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DAME: Domain Adaptation for Matching Entities (2204.09244v1)

Published 20 Apr 2022 in cs.LG and cs.DB

Abstract: Entity matching (EM) identifies data records that refer to the same real-world entity. Despite the effort in the past years to improve the performance in EM, the existing methods still require a huge amount of labeled data in each domain during the training phase. These methods treat each domain individually, and capture the specific signals for each dataset in EM, and this leads to overfitting on just one dataset. The knowledge that is learned from one dataset is not utilized to better understand the EM task in order to make predictions on the unseen datasets with fewer labeled samples. In this paper, we propose a new domain adaptation-based method that transfers the task knowledge from multiple source domains to a target domain. Our method presents a new setting for EM where the objective is to capture the task-specific knowledge from pretraining our model using multiple source domains, then testing our model on a target domain. We study the zero-shot learning case on the target domain, and demonstrate that our method learns the EM task and transfers knowledge to the target domain. We extensively study fine-tuning our model on the target dataset from multiple domains, and demonstrate that our model generalizes better than state-of-the-art methods in EM.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Mohamed Trabelsi (13 papers)
  2. Jeff Heflin (6 papers)
  3. Jin Cao (74 papers)
Citations (11)