Papers
Topics
Authors
Recent
Search
2000 character limit reached

A Benchmark for Automatic Medical Consultation System: Frameworks, Tasks and Datasets

Published 19 Apr 2022 in cs.CL | (2204.08997v3)

Abstract: In recent years, interest has arisen in using machine learning to improve the efficiency of automatic medical consultation and enhance patient experience. In this article, we propose two frameworks to support automatic medical consultation, namely doctor-patient dialogue understanding and task-oriented interaction. We create a new large medical dialogue dataset with multi-level finegrained annotations and establish five independent tasks, including named entity recognition, dialogue act classification, symptom label inference, medical report generation and diagnosis-oriented dialogue policy. We report a set of benchmark results for each task, which shows the usability of the dataset and sets a baseline for future studies. Both code and data is available from https://github.com/lemuria-wchen/imcs21.

Citations (47)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.