Papers
Topics
Authors
Recent
2000 character limit reached

Unit-Disk Range Searching and Applications

Published 19 Apr 2022 in cs.CG and cs.DS | (2204.08992v1)

Abstract: Given a set $P$ of $n$ points in the plane, we consider the problem of computing the number of points of $P$ in a query unit disk (i.e., all query disks have the same radius). We show that the main techniques for simplex range searching in the plane can be adapted to this problem. For example, by adapting Matou\v{s}ek's results, we can build a data structure of $O(n)$ space so that each query can be answered in $O(\sqrt{n})$ time. Our techniques lead to improvements for several other classical problems, such as batched range searching, counting/reporting intersecting pairs of unit circles, distance selection, discrete 2-center, etc. For example, given a set of $n$ unit disks and a set of $n$ points in the plane, the batched range searching problem is to compute for each disk the number of points in it. Previous work [Katz and Sharir, 1997] solved the problem in $O(n{4/3}\log n)$ time while our new algorithm runs in $O(n{4/3})$ time.

Citations (10)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.