Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-Shot Program Representation Learning (2204.08360v1)

Published 18 Apr 2022 in cs.SE

Abstract: Learning program representations has been the core prerequisite of code intelligent tasks such as code search and code clone detection. The state-of-the-art pre-trained models such as CodeBERT require the availability of large-scale code corpora. However, gathering training samples can be costly and infeasible for domain-specific languages such as Solidity for smart contracts. In this paper, we propose Zecoler, a zero-shot learning approach for code representations. Zecoler is built upon a pre-trained programming LLM. In order to elicit knowledge from the pre-trained models efficiently, Zecoler casts the downstream tasks to the same form of pre-training tasks by inserting trainable prompts into the original input. Then, it employs the prompt learning technique which optimizes the pre-trained model by merely adjusting the original input. This enables the representation model to efficiently fit the scarce task-oriented data while reusing pre-trained knowledge. We evaluate Zecoler in three code intelligent tasks in two program languages that have no training samples, namely, Solidity and Go, with model trained in corpora of common languages such as Java. Experimental results show that our approach significantly outperforms baseline models in both zero-shot and few-shot settings.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nan Cui (5 papers)
  2. Yuze Jiang (11 papers)
  3. Xiaodong Gu (62 papers)
  4. Beijun Shen (14 papers)
Citations (8)