Papers
Topics
Authors
Recent
Search
2000 character limit reached

How to Attain Communication-Efficient DNN Training? Convert, Compress, Correct

Published 18 Apr 2022 in cs.LG | (2204.08211v2)

Abstract: This paper introduces CO3 -- an algorithm for communication-efficient federated Deep Neural Network (DNN) training. CO3 takes its name from three processing applied which reduce the communication load when transmitting the local DNN gradients from the remote users to the Parameter Server. Namely: (i) gradient quantization through floating-point conversion, (ii) lossless compression of the quantized gradient, and (iii) quantization error correction. We carefully design each of the steps above to assure good training performance under a constraint on the communication rate. In particular, in steps (i) and (ii), we adopt the assumption that DNN gradients are distributed according to a generalized normal distribution, which is validated numerically in the paper. For step (iii), we utilize an error feedback with memory decay mechanism to correct the quantization error introduced in step (i). We argue that the memory decay coefficient, similarly to the learning rate, can be optimally tuned to improve convergence. A rigorous convergence analysis of the proposed CO3 with SGD is provided. Moreover, with extensive simulations, we show that CO3 offers improved performance when compared with existing gradient compression schemes in the literature which employ sketching and non-uniform quantization of the local gradients.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.