Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Federated Learning for Vision-based Obstacle Avoidance in the Internet of Robotic Things (2204.06949v1)

Published 14 Apr 2022 in cs.RO

Abstract: Deep learning methods have revolutionized mobile robotics, from advanced perception models for an enhanced situational awareness to novel control approaches through reinforcement learning. This paper explores the potential of federated learning for distributed systems of mobile robots enabling collaboration on the Internet of Robotic Things. To demonstrate the effectiveness of such an approach, we deploy wheeled robots in different indoor environments. We analyze the performance of a federated learning approach and compare it to a traditional centralized training process with a priori aggregated data. We show the benefits of collaborative learning across heterogeneous environments and the potential for sim-to-real knowledge transfer. Our results demonstrate significant performance benefits of FL and sim-to-real transfer for vision-based navigation, in addition to the inherent privacy-preserving nature of FL by keeping computation at the edge. This is, to the best of our knowledge, the first work to leverage FL for vision-based navigation that also tests results in real-world settings.

Citations (7)

Summary

We haven't generated a summary for this paper yet.