Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Invariant subspaces and explicit Bethe vectors in the integrable open spin $1/2$ $\XYZ$ chain (2204.05732v1)

Published 12 Apr 2022 in cond-mat.stat-mech, math-ph, math.MP, and quant-ph

Abstract: We derive a criterion under which splitting of all eigenstates of an open $\XYZ$ Hamiltonian with boundary fields into two invariant subspaces, spanned by chiral shock states, occurs. The splitting is governed by an integer number, which has the geometrical meaning of the maximal number of kinks in the basis states. We describe the generic structure of the respective Bethe vectors. We obtain explicit expressions for Bethe vectors, in the absence of Bethe roots, and those generated by one Bethe root, and investigate the \multiplet. We also describe in detail an elliptic analogue of the spin-helix state, appearing in both the periodic and the open $\XYZ$ model, and derive the eigenstate condition. The elliptic analogue of the spin-helix state is characterized by a quasi-periodic modulation of the magnetization profile, governed by Jacobi elliptic functions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.