Papers
Topics
Authors
Recent
2000 character limit reached

Lyapunov-Guided Representation of Recurrent Neural Network Performance

Published 11 Apr 2022 in cs.LG, math.DS, nlin.CD, and stat.ML | (2204.04876v2)

Abstract: Recurrent Neural Networks (RNN) are ubiquitous computing systems for sequences and multivariate time series data. While several robust architectures of RNN are known, it is unclear how to relate RNN initialization, architecture, and other hyperparameters with accuracy for a given task. In this work, we propose to treat RNN as dynamical systems and to correlate hyperparameters with accuracy through Lyapunov spectral analysis, a methodology specifically designed for nonlinear dynamical systems. To address the fact that RNN features go beyond the existing Lyapunov spectral analysis, we propose to infer relevant features from the Lyapunov spectrum with an Autoencoder and an embedding of its latent representation (AeLLE). Our studies of various RNN architectures show that AeLLE successfully correlates RNN Lyapunov spectrum with accuracy. Furthermore, the latent representation learned by AeLLE is generalizable to novel inputs from the same task and is formed early in the process of RNN training. The latter property allows for the prediction of the accuracy to which RNN would converge when training is complete. We conclude that representation of RNN through Lyapunov spectrum along with AeLLE provides a novel method for organization and interpretation of variants of RNN architectures.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (65)
  1. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neural network based language model. In: Eleventh Annual Conference of the International Speech Communication Association (2010) Das and Olurotimi [1998] Das, S., Olurotimi, O.: Noisy recurrent neural networks: the continuous-time case. IEEE Transactions on Neural Networks 9(5), 913–936 (1998) https://doi.org/10.1109/72.712164 Tino et al. [2001] Tino, P., Schittenkopf, C., Dorffner, G.: Financial volatility trading using recurrent neural networks. IEEE transactions on neural networks 12(4), 865–874 (2001) Su et al. [2020] Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Das, S., Olurotimi, O.: Noisy recurrent neural networks: the continuous-time case. IEEE Transactions on Neural Networks 9(5), 913–936 (1998) https://doi.org/10.1109/72.712164 Tino et al. [2001] Tino, P., Schittenkopf, C., Dorffner, G.: Financial volatility trading using recurrent neural networks. IEEE transactions on neural networks 12(4), 865–874 (2001) Su et al. [2020] Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Tino, P., Schittenkopf, C., Dorffner, G.: Financial volatility trading using recurrent neural networks. IEEE transactions on neural networks 12(4), 865–874 (2001) Su et al. [2020] Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  2. Das, S., Olurotimi, O.: Noisy recurrent neural networks: the continuous-time case. IEEE Transactions on Neural Networks 9(5), 913–936 (1998) https://doi.org/10.1109/72.712164 Tino et al. [2001] Tino, P., Schittenkopf, C., Dorffner, G.: Financial volatility trading using recurrent neural networks. IEEE transactions on neural networks 12(4), 865–874 (2001) Su et al. [2020] Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Tino, P., Schittenkopf, C., Dorffner, G.: Financial volatility trading using recurrent neural networks. IEEE transactions on neural networks 12(4), 865–874 (2001) Su et al. [2020] Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  3. Tino, P., Schittenkopf, C., Dorffner, G.: Financial volatility trading using recurrent neural networks. IEEE transactions on neural networks 12(4), 865–874 (2001) Su et al. [2020] Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  4. Su, K., Liu, X., Shlizerman, E.: Predict & cluster: Unsupervised skeleton based action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9631–9640 (2020) Pennington et al. [2017] Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  5. Pennington, J., Schoenholz, S., Ganguli, S.: Resurrecting the sigmoid in deep learning through dynamical isometry: theory and practice. In: Advances in Neural Information Processing Systems, pp. 4785–4795 (2017) Sutskever et al. [2014] Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  6. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014) Gregor et al. [2015] Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  7. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: A recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471 (2015). PMLR Choi et al. [2016] Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  8. Choi, K., Fazekas, G., Sandler, M.B.: Text-based lstm networks for automatic music composition. CoRR abs/1604.05358 (2016) Mao et al. [2018] Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  9. Mao, H.H., Shin, T., Cottrell, G.: Deepj: Style-specific music generation. In: 2018 IEEE 12th International Conference on Semantic Computing (ICSC), pp. 377–382 (2018). IEEE Guo et al. [2018] Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  10. Guo, D., Zhou, W., Li, H., Wang, M.: Hierarchical LSTM for sign language translation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018) Hochreiter and Schmidhuber [1997] Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  11. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation 9(8), 1735–1780 (1997) Cho et al. [2014] Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  12. Cho, K., Merrienboer, B., Gülçehre, Ç., Bougares, F., Schwenk, H., Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. CoRR abs/1406.1078 (2014) arXiv:1406.1078 Chung et al. [2014] Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  13. Chung, J., Gülçehre, Ç., Cho, K., Bengio, Y.: Empirical evaluation of gated recurrent neural networks on sequence modeling. CoRR abs/1412.3555 (2014) arXiv:1412.3555 Chang et al. [2019] Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  14. Chang, B., Chen, M., Haber, E., Chi, E.H.: AntisymmetricRNN: a dynamical system view on recurrent neural networks. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=ryxepo0cFX Vorontsov et al. [2017] Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  15. Vorontsov, E., Trabelsi, C., Kadoury, S., Pal, C.: On orthogonality and learning recurrent networks with long term dependencies. In: International Conference on Machine Learning, pp. 3570–3578 (2017). PMLR Rusch and Mishra [2021] Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  16. Rusch, T.K., Mishra, S.: Coupled oscillatory recurrent neural network (coRNN): An accurate and (gradient) stable architecture for learning long time dependencies. In: International Conference on Learning Representations (2021) Erichson et al. [2020] Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  17. Erichson, N.B., Azencot, O., Queiruga, A., Hodgkinson, L., Mahoney, M.W.: Lipschitz recurrent neural networks. In: International Conference on Learning Representations (2020) Ruelle [1979] Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  18. Ruelle, D.: Ergodic theory of differentiable dynamical systems. Publications Mathématiques de l’Institut des Hautes Études Scientifiques 50(1), 27–58 (1979) Oseledets [2008] Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  19. Oseledets, V.: Oseledets theorem. Scholarpedia 3(1), 1846 (2008) https://doi.org/10.4249/scholarpedia.1846 . revision #142085 Engelken et al. [2020] Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  20. Engelken, R., Wolf, F., Abbott, L.F.: Lyapunov spectra of chaotic recurrent neural networks. arXiv preprint arXiv:2006.02427 (2020) Vogt et al. [2022] Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  21. Vogt, R., Puelma Touzel, M., Shlizerman, E., Lajoie, G.: On Lyapunov exponents for RNNs: Understanding information propagation using dynamical systems tools. Frontiers in Applied Mathematics and Statistics 8 (2022) https://doi.org/10.3389/fams.2022.818799 Mikhaeil et al. [2022] Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  22. Mikhaeil, J., Monfared, Z., Durstewitz, D.: On the difficulty of learning chaotic dynamics with rnns. Advances in Neural Information Processing Systems 35, 11297–11312 (2022) Herrmann et al. [2022] Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  23. Herrmann, L., Granz, M., Landgraf, T.: Chaotic dynamics are intrinsic to neural network training with sgd. Advances in Neural Information Processing Systems 35, 5219–5229 (2022) Pascanu et al. [2013] Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  24. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: International Conference on Machine Learning, pp. 1310–1318 (2013) Poole et al. [2016] Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  25. Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., Ganguli, S.: Exponential expressivity in deep neural networks through transient chaos. In: Advances in Neural Information Processing Systems, pp. 3360–3368 (2016) Wang and Hoai [2018] Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  26. Wang, B., Hoai, M.: Predicting body movement and recognizing actions: an integrated framework for mutual benefits. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 341–348 (2018). IEEE Chen et al. [2018] Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  27. Chen, M., Pennington, J., Schoenholz, S.: Dynamical isometry and a mean field theory of RNNs: Gating enables signal propagation in recurrent neural networks. In: International Conference on Machine Learning, pp. 873–882 (2018). PMLR Yang [2019] Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  28. Yang, G.: Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient independence, and neural tangent kernel derivation. arXiv preprint arXiv:1902.04760 (2019) Zheng and Shlizerman [2020] Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  29. Zheng, Y., Shlizerman, E.: R-FORCE: Robust learning for random recurrent neural networks. arXiv preprint arXiv:2003.11660 (2020) Martin et al. [2021] Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  30. Martin, C., Peng, T., Mahoney, M.: Predicting trends in the quality of state-of-the-art neural networks without access to training or testing data. Nature Communications 12, 4122 (2021) https://doi.org/10.1038/s41467-021-24025-8 Naiman and Azencot [2021] Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  31. Naiman, I., Azencot, O.: A Koopman Approach to Understanding Sequence Neural Models. arXiv (2021). https://doi.org/10.48550/ARXIV.2102.07824 . https://arxiv.org/abs/2102.07824 Wisdom et al. [2016] Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  32. Wisdom, S., Powers, T., Hershey, J., Le Roux, J., Atlas, L.: Full-capacity unitary recurrent neural networks. Advances in neural information processing systems 29, 4880–4888 (2016) Jing et al. [2017] Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  33. Jing, L., Shen, Y., Dubcek, T., Peurifoy, J., Skirlo, S., LeCun, Y., Tegmark, M., Soljačić, M.: Tunable efficient unitary neural networks (eUNN) and their application to RNNs. In: International Conference on Machine Learning, pp. 1733–1741 (2017). PMLR Mhammedi et al. [2017] Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  34. Mhammedi, Z., Hellicar, A., Rahman, A., Bailey, J.: Efficient orthogonal parametrisation of recurrent neural networks using householder reflections. In: International Conference on Machine Learning, pp. 2401–2409 (2017). PMLR Azencot et al. [2021] Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  35. Azencot, O., Erichson, N.B., Ben-Chen, M., Mahoney, M.W.: A differential geometry perspective on orthogonal recurrent models. arXiv preprint arXiv:2102.09589 (2021) Kerg et al. [2019] Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  36. Kerg, G., Goyette, K., Puelma Touzel, M., Gidel, G., Vorontsov, E., Bengio, Y., Lajoie, G.: Non-normal recurrent neural network (nnRNN): learning long time dependencies while improving expressivity with transient dynamics. Advances in neural information processing systems 32 (2019) Lim et al. [2021] Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  37. Lim, S.H., Erichson, N.B., Hodgkinson, L., Mahoney, M.W.: Noisy recurrent neural networks. Advances in Neural Information Processing Systems 34, 5124–5137 (2021) Maheswaranathan et al. [2019] Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  38. Maheswaranathan, N., Williams, A., Golub, M., Ganguli, S., Sussillo, D.: Universality and individuality in neural dynamics across large populations of recurrent networks. Advances in neural information processing systems 32 (2019) platform [1930] platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  39. platform, O.: The ordinal numbers of systems of linear differential equations. mathematical journal 31(1), 748–766 (1930) Dawson et al. [1994] Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  40. Dawson, S., Grebogi, C., Sauer, T., Yorke, J.A.: Obstructions to shadowing when a Lyapunov exponent fluctuates about zero. Phys. Rev. Lett. 73, 1927–1930 (1994) https://doi.org/10.1103/PhysRevLett.73.1927 Abarbanel et al. [1991] Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  41. Abarbanel, H.D.I., Brown, R., Kennel, M.B.: Variation of Lyapunov exponents on a strange attractor. Journal of Nonlinear Science 1(2), 175–199 (1991) https://doi.org/10.1007/BF01209065 Shibata [2001] Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  42. Shibata, H.: Ks entropy and mean Lyapunov exponent for coupled map lattices. Physica A: Statistical Mechanics and its Applications 292(1), 182–192 (2001) https://doi.org/10.1016/S0378-4371(00)00591-4 Saitô and Ichimura [1979] Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  43. Saitô, N., Ichimura, A.: Ergodic components in the stochastic region in a Hamiltonian system. In: Casati, G., Ford, J. (eds.) Stochastic Behavior in Classical and Quantum Hamiltonian Systems, pp. 137–144. Springer, Berlin, Heidelberg (1979) Ochs [1999] Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  44. Ochs, G.: Stability of Oseledets spaces is equivalent to stability of Lyapunov exponents. Dynamics and Stability of Systems 14(2), 183–201 (1999) Geist et al. [1990] Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  45. Geist, K., Parlitz, U., Lauterborn, W.: Comparison of Different Methods for Computing Lyapunov Exponents. Progress of Theoretical Physics 83(5), 875–893 (1990) https://doi.org/10.1143/PTP.83.875 https://academic.oup.com/ptp/article-pdf/83/5/875/5302061/83-5-875.pdf Arnold [1995] Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  46. Arnold, L.: Random dynamical systems. Dynamical systems, 1–43 (1995) Benettin et al. [1980] Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  47. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. part 1: Theory. Meccanica 15(1), 9–20 (1980) Dieci and Van Vleck [1995] Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  48. Dieci, L., Van Vleck, E.S.: Computation of a few Lyapunov exponents for continuous and discrete dynamical systems. Applied Numerical Mathematics 17(3), 275–291 (1995) Goodfellow et al. [2016] Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  49. Goodfellow, I.J., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge, MA, USA (2016). http://www.deeplearningbook.org Chollet [2021] Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  50. Chollet, F.: Deep Learning with Python. Simon and Schuster, ??? (2021) Pearson [1901] Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  51. Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin philosophical magazine and journal of science 2(11), 559–572 (1901) Su and Shlizerman [2020] Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  52. Su, K., Shlizerman, E.: Clustering and recognition of spatiotemporal features through interpretable embedding of sequence to sequence recurrent neural networks. Frontiers in artificial intelligence 3, 70 (2020) Van der Maaten and Hinton [2008] Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  53. Maaten, L., Hinton, G.: Visualizing data using t-sne. Journal of machine learning research 9(11) (2008) McInnes et al. [2018] McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  54. McInnes, L., Healy, J., Saul, N., Großberger, L.: Umap: Uniform manifold approximation and projection. Journal of Open Source Software 3(29), 861 (2018) Sussillo and Abbott [2009] Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  55. Sussillo, D., Abbott, L.F.: Generating coherent patterns of activity from chaotic neural networks. Neuron 63(4), 544–557 (2009) DePasquale et al. [2018] DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  56. DePasquale, B., Cueva, C.J., Rajan, K., Escola, G.S., Abbott, L.: full-FORCE: A target-based method for training recurrent networks. PloS one 13(2), 0191527 (2018) Karpathy et al. [2015] Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  57. Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent networks. arXiv e-prints, 1506 (2015) LeCun et al. [1998] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  58. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998) Bai et al. [2018] Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  59. Bai, S., Zico Kolter, J., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints, 1803 (2018) Rusch et al. [2022] Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  60. Rusch, T.K., Mishra, S., Erichson, N.B., Mahoney, M.W.: Long Expressive Memory for Sequence Modeling (2022) Lusch et al. [2018] Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  61. Lusch, B., Kutz, J.N., Brunton, S.L.: Deep learning for universal linear embeddings of nonlinear dynamics. Nature Communications 9(1), 4950 (2018) https://doi.org/10.1038/s41467-018-07210-0 Lange et al. [2021] Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  62. Lange, H., Brunton, S.L., Kutz, J.N.: From Fourier to Koopman: Spectral methods for long-term time series prediction. J. Mach. Learn. Res. 22(41), 1–38 (2021) Morton et al. [2018] Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  63. Morton, J., Jameson, A., Kochenderfer, M.J., Witherden, F.: Deep dynamical modeling and control of unsteady fluid flows. Advances in Neural Information Processing Systems 31 (2018) Erichson et al. [2019] Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  64. Erichson, N.B., Muehlebach, M., Mahoney, M.W.: Physics-informed Autoencoders for Lyapunov-stable Fluid Flow Prediction. arXiv (2019). https://doi.org/10.48550/ARXIV.1905.10866 . https://arxiv.org/abs/1905.10866 Azencot et al. [2020] Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
  65. Azencot, O., Erichson, N.B., Lin, V., Mahoney, M.: Forecasting sequential data using consistent Koopman autoencoders. In: International Conference on Machine Learning, pp. 475–485 (2020). PMLR
Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.