Heat kernels of non-local Schrödinger operators with Kato potentials (2204.04239v2)
Abstract: We study heat kernels of Schr\"odinger operators whose kinetic terms are non-local operators built for sufficiently regular symmetric L\'evy measures with radial decreasing profiles and potentials belong to Kato class. Our setting is fairly general and novel -- it allows us to treat both heavy- and light-tailed L\'evy measures in a joint framework. We establish a certain relative-Kato bound for the corresponding semigroups and potentials. This enables us to apply a general perturbation technique to construct the heat kernels and give sharp estimates of them. Assuming that the L\'evy measure and the potential satisfy a little stronger conditions, we additionally obtain the regularity of the heat kernels. Finally, we discuss the applications to the smoothing properties of the corresponding semigroups. Our results cover many important examples of non-local operators, including fractional and quasi-relativistic Schr\"odinger operators.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.