Decorated Defect Construction of Gapless-SPT States
Abstract: Symmetry protected topological (SPT) phases are one of the simplest, yet nontrivial, gapped systems that go beyond the Landau paradigm. In this work, we study an extension of the notion of SPT for gapless systems, namely, gapless symmetry protected topological states. We construct several simple gapless-SPT models using the decorated defect construction, which allow analytical understanding of non-trivial topological features including the symmetry charge under twisted boundary conditions, and boundary (quasi)-degeneracy under open boundary conditions. We also comment on the stability of the gapless-SPT models under symmetric perturbations, and apply small-scale exact diagonalization when direct analytic understanding is not available.
- X. Chen, Z. C. Gu, and X. G. Wen, “Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order,” Phys. Rev. B 82 (2010) 155138, arXiv:1004.3835 [cond-mat.str-el].
- A. Kitaev, “Anyons in an exactly solved model and beyond,” Annals Phys. 321 no. 1, (2006) 2–111, arXiv:cond-mat/0506438.
- C. Xu and Y.-Z. You, “Bosonic Short Range Entangled states Beyond Group Cohomology classification,” Phys. Rev. B 91 no. 5, (2015) 054406, arXiv:1410.6486 [cond-mat.str-el].
- J. Wang, X.-G. Wen, and E. Witten, “A New SU(2) Anomaly,” J. Math. Phys. 60 no. 5, (2019) 052301, arXiv:1810.00844 [hep-th].
- Y.-A. Chen and P.-S. Hsin, “Exactly Solvable Lattice Hamiltonians and Gravitational Anomalies,” arXiv:2110.14644 [cond-mat.str-el].
- S. M. Kravec, J. McGreevy, and B. Swingle, “All-fermion electrodynamics and fermion number anomaly inflow,” Phys. Rev. D 92 no. 8, (2015) 085024, arXiv:1409.8339 [hep-th].
- X. Chen, Y.-M. Lu, and A. Vishwanath, “Symmetry-protected topological phases from decorated domain walls,” Nature communications 5 no. 1, (2014) 1–11.
- X. Yang, S. Jiang, A. Vishwanath, and Y. Ran, “Dyonic lieb-schultz-mattis theorem and symmetry protected topological phases in decorated dimer models,” Phys. Rev. B 98 (Sep, 2018) 125120. https://link.aps.org/doi/10.1103/PhysRevB.98.125120.
- Q.-R. Wang, S.-Q. Ning, and M. Cheng, “Domain Wall Decorations, Anomalies and Spectral Sequences in Bosonic Topological Phases,” arXiv:2104.13233 [cond-mat.str-el].
- A. Kitaev and J. Preskill, “Topological entanglement entropy,” Phys. Rev. Lett. 96 (2006) 110404, arXiv:hep-th/0510092.
- M. Levin and X.-G. Wen, “Detecting topological order in a ground state wave function,” Physical Review Letters 96 no. 11, (Mar, 2006) . http://dx.doi.org/10.1103/PhysRevLett.96.110405.
- T. Grover, A. M. Turner, and A. Vishwanath, “Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions,” Phys. Rev. B 84 (2011) 195120, arXiv:1108.4038 [cond-mat.str-el].
- Y. Zheng, H. He, B. Bradlyn, J. Cano, T. Neupert, and B. A. Bernevig, “Structure of the entanglement entropy of (3+1)-dimensional gapped phases of matter,” Phys. Rev. B 97 no. 19, (2018) 195118, arXiv:1710.01747 [cond-mat.str-el].
- T. Scaffidi, D. E. Parker, and R. Vasseur, “Gapless symmetry-protected topological order,” Physical Review X 7 no. 4, (2017) 041048.
- R. Verresen, R. Thorngren, N. G. Jones, and F. Pollmann, “Gapless topological phases and symmetry-enriched quantum criticality,” arXiv e-prints (May, 2019) arXiv:1905.06969, arXiv:1905.06969 [cond-mat.str-el].
- R. Thorngren, A. Vishwanath, and R. Verresen, “Intrinsically Gapless Topological Phases,” arXiv:2008.06638 [cond-mat.str-el].
- S. C. Furuya and M. Oshikawa, “Symmetry Protection of Critical Phases and a Global Anomaly in 1+1111+11 + 1 Dimensions,” Phys. Rev. Lett. 118 no. 2, (2017) 021601, arXiv:1503.07292 [cond-mat.stat-mech].
- Y. Yao, C.-T. Hsieh, and M. Oshikawa, “Anomaly matching and symmetry-protected critical phases in SU(N)𝑆𝑈𝑁SU(N)italic_S italic_U ( italic_N ) spin systems in 1+1 dimensions,” Phys. Rev. Lett. 123 no. 18, (2019) 180201, arXiv:1805.06885 [cond-mat.str-el].
- R. Verresen, J. Bibo, and F. Pollmann, “Quotient symmetry protected topological phenomena,” arXiv preprint arXiv:2102.08967 (2021) .
- A. Keselman and E. Berg, “Gapless symmetry-protected topological phase of fermions in one dimension,” Physical Review B 91 no. 23, (2015) 235309.
- T. Grover and A. Vishwanath, “Quantum Criticality in Topological Insulators and Superconductors: Emergence of Strongly Coupled Majoranas and Supersymmetry,” arXiv:1206.1332 [cond-mat.str-el].
- W. Ji, S.-H. Shao, and X.-G. Wen, “Topological Transition on the Conformal Manifold,” Phys. Rev. Res. 2 no. 3, (2020) 033317, arXiv:1909.01425 [cond-mat.str-el].
- U. Borla, R. Verresen, J. Shah, and S. Moroz, “Gauging the Kitaev chain,” SciPost Phys. 10 (2021) 148. https://scipost.org/10.21468/SciPostPhys.10.6.148.
- X. Wang, L. Li, and J. Wu, “Stability and fine structure of symmetry-enriched quantum criticality in a spin ladder triangular model,” arXiv preprint arXiv:2306.11446 (2023) .
- Y. Hidaka, S. C. Furuya, A. Ueda, and Y. Tada, “Gapless symmetry-protected topological phase of quantum antiferromagnets on anisotropic triangular strip,” Phys. Rev. B 106 no. 14, (2022) 144436, arXiv:2205.15525 [cond-mat.str-el].
- X.-J. Yu, R.-Z. Huang, H.-H. Song, L. Xu, C. Ding, and L. Zhang, “Conformal boundary conditions of symmetry-enriched quantum critical spin chains,” Phys. Rev. Lett. 129 (Nov, 2022) 210601. https://link.aps.org/doi/10.1103/PhysRevLett.129.210601.
- D. E. Parker, T. Scaffidi, and R. Vasseur, “Topological Luttinger liquids from decorated domain walls,” Phys. Rev. B 97 no. 16, (Apr., 2018) 165114, arXiv:1711.09106 [cond-mat.str-el].
- D. E. Parker, R. Vasseur, and T. Scaffidi, “Topologically Protected Long Edge Coherence Times in Symmetry-Broken Phases,” Phys. Rev. Lett. 122 no. 24, (June, 2019) 240605, arXiv:1808.07485 [cond-mat.str-el].
- J. Zhao, Z. Yan, M. Cheng, and Z. Y. Meng, “Higher-form symmetry breaking at Ising transitions,” Phys. Rev. Res. 3 no. 3, (2021) 033024, arXiv:2011.12543 [cond-mat.str-el].
- H. Yang, L. Li, K. Okunishi, and H. Katsura, “Duality, criticality, anomaly, and topology in quantum spin-1 chains,” arXiv preprint arXiv:2203.15791 (2022) .
- R. Ma, L. Zou, and C. Wang, “Edge physics at the deconfined transition between a quantum spin Hall insulator and a superconductor,” SciPost Phys. 12 (2022) 196. https://scipost.org/10.21468/SciPostPhys.12.6.196.
- R. Wen and A. C. Potter, “Bulk-boundary correspondence for intrinsically-gapless SPTs from group cohomology,” arXiv:2208.09001 [cond-mat.str-el].
- L. Li, M. Oshikawa, and Y. Zheng, “Intrinsically/Purely Gapless-SPT from Non-Invertible Duality Transformations,” arXiv:2307.04788 [cond-mat.str-el].
- J. Wang, X.-G. Wen, and E. Witten, “Symmetric Gapped Interfaces of SPT and SET States: Systematic Constructions,” Phys. Rev. X 8 no. 3, (2018) 031048, arXiv:1705.06728 [cond-mat.str-el].
- L. Li, M. Oshikawa, and Y. Zheng, “Non-Invertible Duality Transformation Between SPT and SSB Phases,” arXiv:2301.07899 [cond-mat.str-el].
- X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, “Symmetry protected topological orders and the group cohomology of their symmetry group,” Phys. Rev. B 87 no. 15, (2013) 155114, arXiv:1106.4772 [cond-mat.str-el].
- Q.-R. Wang, Y. Qi, and Z.-C. Gu, “Anomalous Symmetry Protected Topological States in Interacting Fermion Systems,” Phys. Rev. Lett. 123 no. 20, (Nov., 2019) 207003, arXiv:1810.12899 [cond-mat.str-el].
- E. Witten, “The ”Parity” Anomaly On An Unorientable Manifold,” Phys. Rev. B 94 no. 19, (2016) 195150, arXiv:1605.02391 [hep-th].
- X. Chen, Z.-C. Gu, and X.-G. Wen, “Classification of gapped symmetric phases in one-dimensional spin systems,” Physical Review B 83 no. 3, (Jan, 2011) . http://dx.doi.org/10.1103/PhysRevB.83.035107.
- F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, “Symmetry protection of topological phases in one-dimensional quantum spin systems,” Physical Review B 85 no. 7, (Feb, 2012) . http://dx.doi.org/10.1103/PhysRevB.85.075125.
- J. C. Wang, Z.-C. Gu, and X.-G. Wen, “Field theory representation of gauge-gravity symmetry-protected topological invariants, group cohomology and beyond,” Phys. Rev. Lett. 114 no. 3, (2015) 031601, arXiv:1405.7689 [cond-mat.str-el].
- M. Levin and Z.-C. Gu, “Braiding statistics approach to symmetry-protected topological phases,” Physical Review B 86 no. 11, (2012) 115109.
- Y. Yao and M. Oshikawa, “Twisted boundary condition and Lieb-Schultz-Mattis ingappability for discrete symmetries,” Phys. Rev. Lett. 126 no. 21, (2021) 217201, arXiv:2010.09244 [cond-mat.str-el].
- U. Borla, R. Verresen, J. Shah, and S. Moroz, “Gauging the Kitaev chain,” SciPost Phys. 10 no. 6, (2021) 148, arXiv:2010.00607 [cond-mat.str-el].
- M. Suzuki, “Relationship among Exactly Soluble Models of Critical Phenomena. I*): 2D Ising Model, Dimer Problem and the Generalized XY-Model,” Progress of Theoretical Physics 46 no. 5, (11, 1971) 1337–1359, https://academic.oup.com/ptp/article-pdf/46/5/1337/5268367/46-5-1337.pdf. https://doi.org/10.1143/PTP.46.1337.
- W. Son, L. Amico, R. Fazio, A. Hamma, S. Pascazio, and V. Vedral, “Quantum phase transition between cluster and antiferromagnetic states,” EPL (Europhysics Letters) 95 no. 5, (Aug, 2011) 50001. https://doi.org/10.1209/0295-5075/95/50001.
- B. Zeng, X. Chen, D.-L. Zhou, and X.-G. Wen, “Quantum information meets quantum matter – from quantum entanglement to topological phase in many-body systems,” 2018.
- T. Kennedy and H. Tasaki, “Hidden z2subscriptz2{\mathrm{z}}_{2}roman_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT×z2subscriptz2{\mathrm{z}}_{2}roman_z start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT symmetry breaking in haldane-gap antiferromagnets,” Phys. Rev. B 45 (Jan, 1992) 304–307. https://link.aps.org/doi/10.1103/PhysRevB.45.304.
- T. Kennedy and H. Tasaki, “Hidden symmetry breaking and the haldane phase ins=1 quantum spin chains,” Communications in Mathematical Physics 147 no. 3, (1992) 431–484. https://doi.org/10.1007/BF02097239.
- M. Oshikawa, “Hidden z2* z2 symmetry in quantum spin chains with arbitrary integer spin,” Journal of Physics: Condensed Matter 4 no. 36, (1992) 7469.
- X.-G. Wen, “Symmetry-protected topological invariants of symmetry-protected topological phases of interacting bosons and fermions,” Phys. Rev. B 89 no. 3, (2014) 035147, arXiv:1301.7675 [cond-mat.str-el].
- L. H. Santos and J. Wang, “Symmetry-protected many-body Aharonov-Bohm effect,” Phys. Rev. B 89 no. 19, (2014) 195122, arXiv:1310.8291 [quant-ph].
- J. Wang and X.-G. Wen, “Non-Abelian string and particle braiding in topological order: Modular SL(3,ℤℤ\mathbb{Z}blackboard_Z) representation and (3+1) -dimensional twisted gauge theory,” Phys. Rev. B 91 no. 3, (2015) 035134, arXiv:1404.7854 [cond-mat.str-el].
- C. Wang and M. Levin, “Braiding Statistics of Loop Excitations in Three Dimensions,” Phys. Rev. Lett. 113 no. 8, (Aug., 2014) 080403, arXiv:1403.7437 [cond-mat.str-el].
- Z.-C. Gu, J. C. Wang, and X.-G. Wen, “Multi-kink topological terms and charge-binding domain-wall condensation induced symmetry-protected topological states: Beyond Chern-Simons/BF theory,” Phys. Rev. B 93 no. 11, (2016) 115136, arXiv:1503.01768 [cond-mat.str-el].
- M. Levin and Z.-C. Gu, “Braiding statistics approach to symmetry-protected topological phases,” Phys. Rev. B 86 no. 11, (Sept., 2012) 115109, arXiv:1202.3120 [cond-mat.str-el].
- C. Wang and M. Levin, “Topological invariants for gauge theories and symmetry-protected topological phases,” Phys. Rev. B 91 no. 16, (Apr., 2015) 165119, arXiv:1412.1781 [cond-mat.str-el].
- E. Lieb, T. Schultz, and D. Mattis, “Two soluble models of an antiferromagnetic chain,” Annals of Physics 16 no. 3, (1961) 407–466.
- A. Seidel and D.-H. Lee, “The luther-emery liquid: Spin gap and anomalous flux period,” Phys. Rev. B 71 (Jan, 2005) 045113. https://link.aps.org/doi/10.1103/PhysRevB.71.045113.
- N. Seiberg, “Thoughts About Quantum Field Theory,” vision talk in Strings 2019 .
- H. Yang, L. Li, K. Okunishi, and H. Katsura, “Duality, criticality, anomaly, and topology in quantum spin-1 chains,” 2022. https://arxiv.org/abs/2203.15791.
- I. Affleck and E. H. Lieb, “A proof of part of haldane’s conjecture on spin chains,” in Condensed Matter Physics and Exactly Soluble Models, pp. 235–247. Springer, 1986.
- M. Oshikawa, M. Yamanaka, and I. Affleck, “Magnetization plateaus in spin chains: “haldane gap” for half-integer spins,” Phys. Rev. Lett. 78 (Mar, 1997) 1984–1987. https://link.aps.org/doi/10.1103/PhysRevLett.78.1984.
- M. Cheng, M. Zaletel, M. Barkeshli, A. Vishwanath, and P. Bonderson, “Translational symmetry and microscopic constraints on symmetry-enriched topological phases: A view from the surface,” Phys. Rev. X 6 (Dec, 2016) 041068. https://link.aps.org/doi/10.1103/PhysRevX.6.041068.
- X. Chen, Y.-M. Lu, and A. Vishwanath, “Symmetry-protected topological phases from decorated domain walls.,” Nature communications 5 (2014) 3507.
- Fields, strings and critical phenomena, 1990.
- Y. Fuji, “Effective field theory for one-dimensional valence-bond-solid phases and their symmetry protection,” Phys. Rev. B 93 (Mar, 2016) 104425. https://link.aps.org/doi/10.1103/PhysRevB.93.104425.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.