Papers
Topics
Authors
Recent
2000 character limit reached

Local lens rigidity for manifolds of Anosov type

Published 5 Apr 2022 in math.DG, math.AP, and math.DS | (2204.02476v2)

Abstract: The lens data of a Riemannian manifold with boundary is the collection of lengths of geodesics with endpoints on the boundary together with their incoming and outgoing vectors. We show that negatively-curved Riemannian manifolds with strictly convex boundary are locally lens rigid in the following sense: if $g_0$ is such a metric, then any metric $g$ sufficiently close to $g_0$ and with same lens data is isometric to $g_0$, up to a boundary-preserving diffeomorphism. More generally, we consider the same problem for a wider class of metrics with strictly convex boundary, called metrics of Anosov type. We prove that the same rigidity result holds within that class in dimension $2$ and in any dimension, further assuming that the curvature is non-positive.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.