Papers
Topics
Authors
Recent
2000 character limit reached

Repeat after me: Self-supervised learning of acoustic-to-articulatory mapping by vocal imitation

Published 5 Apr 2022 in cs.SD, cs.CL, and eess.AS | (2204.02269v1)

Abstract: We propose a computational model of speech production combining a pre-trained neural articulatory synthesizer able to reproduce complex speech stimuli from a limited set of interpretable articulatory parameters, a DNN-based internal forward model predicting the sensory consequences of articulatory commands, and an internal inverse model based on a recurrent neural network recovering articulatory commands from the acoustic speech input. Both forward and inverse models are jointly trained in a self-supervised way from raw acoustic-only speech data from different speakers. The imitation simulations are evaluated objectively and subjectively and display quite encouraging performances.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.