Kernel-weighted specification testing under general distributions
Abstract: Kernel-weighted test statistics have been widely used in a variety of settings including non-stationary regression, inference on propensity score and panel data models. We develop the limit theory for a kernel-based specification test of a parametric conditional mean when the law of the regressors may not be absolutely continuous to the Lebesgue measure and is contaminated with singular components. This result is of independent interest and may be useful in other applications that utilize kernel smoothed U-statistics. Simulations illustrate the non-trivial impact of the distribution of the conditioning variables on the power properties of the test statistic.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.