Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Example-based Explanations with Adversarial Attacks for Respiratory Sound Analysis (2203.16141v1)

Published 30 Mar 2022 in cs.SD, cs.LG, and eess.AS

Abstract: Respiratory sound classification is an important tool for remote screening of respiratory-related diseases such as pneumonia, asthma, and COVID-19. To facilitate the interpretability of classification results, especially ones based on deep learning, many explanation methods have been proposed using prototypes. However, existing explanation techniques often assume that the data is non-biased and the prediction results can be explained by a set of prototypical examples. In this work, we develop a unified example-based explanation method for selecting both representative data (prototypes) and outliers (criticisms). In particular, we propose a novel application of adversarial attacks to generate an explanation spectrum of data instances via an iterative fast gradient sign method. Such unified explanation can avoid over-generalisation and bias by allowing human experts to assess the model mistakes case by case. We performed a wide range of quantitative and qualitative evaluations to show that our approach generates effective and understandable explanation and is robust with many deep learning models

Citations (14)

Summary

We haven't generated a summary for this paper yet.