Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Properties and Performance of the ABCDe Random Graph Model with Community Structure (2203.14899v2)

Published 28 Mar 2022 in cs.SI, cs.LG, and math.CO

Abstract: In this paper, we investigate properties and performance of synthetic random graph models with a built-in community structure. Such models are important for evaluating and tuning community detection algorithms that are unsupervised by nature. We propose ABCDe, a multi-threaded implementation of the ABCD (Artificial Benchmark for Community Detection) graph generator. We discuss the implementation details of the algorithm and compare it with both the previously available sequential version of the ABCD model and with the parallel implementation of the standard and extensively used LFR (Lancichinetti--Fortunato--Radicchi) generator. We show that ABCDe is more than ten times faster and scales better than the parallel implementation of LFR provided in NetworKit. Moreover, the algorithm is not only faster but random graphs generated by ABCD have similar properties to the ones generated by the original LFR algorithm, while the parallelized NetworKit implementation of LFR produces graphs that have noticeably different characteristics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.