Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

The holomorphic discrete series contribution to the generalized Whittaker Plancherel formula (2203.14784v2)

Published 28 Mar 2022 in math.RT

Abstract: For a Hermitian Lie group $G$ of tube type we find the contribution of the holomorphic discrete series to the Plancherel decomposition of the Whittaker space $L2(G/N,\psi)$, where $N$ is the unipotent radical of the Siegel parabolic subgroup and $\psi$ is a certain non-degenerate unitary character on $N$. The holomorphic discrete series embeddings are constructed in terms of generalized Whittaker vectors for which we find explicit formulas in the bounded domain realization, the tube domain realization and the $L2$-model of the holomorphic discrete series. Although $L2(G/N,\psi)$ does not have finite multiplicities in general, the holomorphic discrete series contribution does. Moreover, we obtain an explicit formula for the formal dimensions of the holomorphic discrete series embeddings, and we interpret the holomorphic discrete series contribution to $L2(G/N,\psi)$ as boundary values of holomorphic functions on a domain $\Xi$ in a complexification $G_{\mathbb{C}}$ of $G$ forming a Hardy type space $\mathcal{H}_2(\Xi,\psi)$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube