Papers
Topics
Authors
Recent
2000 character limit reached

Optimistic Online Convex Optimization in Dynamic Environments

Published 28 Mar 2022 in cs.LG and math.OC | (2203.14520v1)

Abstract: In this paper, we study the optimistic online convex optimization problem in dynamic environments. Existing works have shown that Ader enjoys an $O\left(\sqrt{\left(1+P_T\right)T}\right)$ dynamic regret upper bound, where $T$ is the number of rounds, and $P_T$ is the path length of the reference strategy sequence. However, Ader is not environment-adaptive. Based on the fact that optimism provides a framework for implementing environment-adaptive, we replace Greedy Projection (GP) and Normalized Exponentiated Subgradient (NES) in Ader with Optimistic-GP and Optimistic-NES respectively, and name the corresponding algorithm ONES-OGP. We also extend the doubling trick to the adaptive trick, and introduce three characteristic terms naturally arise from optimism, namely $M_T$, $\widetilde{M}T$ and $V_T+1{L2\rho\left(\rho+2 P_T\right)\leqslant\varrho2 V_T}D_T$, to replace the dependence of the dynamic regret upper bound on $T$. We elaborate ONES-OGP with adaptive trick and its subgradient variation version, all of which are environment-adaptive.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.