Papers
Topics
Authors
Recent
Search
2000 character limit reached

Lightweight Graph Convolutional Networks with Topologically Consistent Magnitude Pruning

Published 25 Mar 2022 in cs.LG and cs.CV | (2203.13616v1)

Abstract: Graph convolution networks (GCNs) are currently mainstream in learning with irregular data. These models rely on message passing and attention mechanisms that capture context and node-to-node relationships. With multi-head attention, GCNs become highly accurate but oversized, and their deployment on cheap devices requires their pruning. However, pruning at high regimes usually leads to topologically inconsistent networks with weak generalization. In this paper, we devise a novel method for lightweight GCN design. Our proposed approach parses and selects subnetworks with the highest magnitudes while guaranteeing their topological consistency. The latter is obtained by selecting only accessible and co-accessible connections which actually contribute in the evaluation of the selected subnetworks. Experiments conducted on the challenging FPHA dataset show the substantial gain of our topologically consistent pruning method especially at very high pruning regimes.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.