Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Introduction to the signature method (2203.13521v2)

Published 25 Mar 2022 in physics.geo-ph and physics.app-ph

Abstract: The sequential data observed in earth science can be regarded as paths in multidimensional space. To read the path effectively, it is useful to convert it into a sequence of numbers called the signature, which can faithfully describe the order of points and nonlinearity in the path. In particular, a linear combination of the terms in a signature can be used to approximate any nonlinear function defined on a set of paths. Thereby, when one learns a set of sequential data with labels attached to it, linear regression can be applied to the pairs of signature and label, which will achieve high performance learning even when the labels are determined by a nonlinear function. By incorporating the signature methods into machine learning and data assimilation utilizing sequential data, it is expected that we can extract information that has previously been overlooked.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube