Non-uniqueness in law of transport-diffusion equation forced by random noise
Abstract: We consider a transport-diffusion equation forced by random noise of three types: additive, linear multiplicative in It$\hat{\mathrm{o}}$'s interpretation, and transport in Stratonovich's interpretation. Via convex integration modified to probabilistic setting, we prove existence of a divergence-free vector field with spatial regularity in Sobolev space and corresponding solution to a transport-diffusion equation with spatial regularity in Lebesgue space, and consequently non-uniqueness in law at the level of probabilistically strong solutions globally in time.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.