Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Why are the solutions to overdetermined problems usually "as symmetric as possible"? (2203.12950v2)

Published 24 Mar 2022 in math.AP

Abstract: In this paper, we study the symmetry properties of nondegenerate critical points of shape functionals using the implicit function theorem. We show that, if a shape functional is invariant with respect to some continuous group of rotations, then its nondegenerate critical points (bounded open sets with smooth enough boundary) share the same symmetries. We also consider the case where the shape functional exhibits translational invariance in addition to just rotational invariance. Finally, we study the applications of this result to the theory of one/two-phase overdetermined problems of Serrin-type. En passant, we give a simple proof of the fact that the ball is the only nondegenerate critical point of the Lagrangian associated to the maximization problem for the torsional rigidity under a volume constraint. We remark that the proof does not rely on either the method of moving planes or rearrangement techniques.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.