Papers
Topics
Authors
Recent
2000 character limit reached

SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesis Approach Using Channel Modeling

Published 24 Mar 2022 in cs.SD and eess.AS | (2203.12937v2)

Abstract: We present a self-supervised speech restoration method without paired speech corpora. Because the previous general speech restoration method uses artificial paired data created by applying various distortions to high-quality speech corpora, it cannot sufficiently represent acoustic distortions of real data, limiting the applicability. Our model consists of analysis, synthesis, and channel modules that simulate the recording process of degraded speech and is trained with real degraded speech data in a self-supervised manner. The analysis module extracts distortionless speech features and distortion features from degraded speech, while the synthesis module synthesizes the restored speech waveform, and the channel module adds distortions to the speech waveform. Our model also enables audio effect transfer, in which only acoustic distortions are extracted from degraded speech and added to arbitrary high-quality audio. Experimental evaluations with both simulated and real data show that our method achieves significantly higher-quality speech restoration than the previous supervised method, suggesting its applicability to real degraded speech materials.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.