Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A combination between VQ and covariance matrices for speaker recognition (2203.12306v1)

Published 23 Mar 2022 in cs.SD, cs.CR, and eess.AS

Abstract: This paper presents a new algorithm for speaker recognition based on the combination between the classical Vector Quantization (VQ) and Covariance Matrix (CM) methods. The combined VQ-CM method improves the identification rates of each method alone, with comparable computational burden. It offers a straightforward procedure to obtain a model similar to GMM with full covariance matrices. Experimental results also show that it is more robust against noise than VQ or CM alone.

Citations (6)

Summary

We haven't generated a summary for this paper yet.