Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modelling and Analysis of Car Following Algorithms for Fuel Economy Improvement in Connected and Autonomous Vehicles (CAVs) (2203.12078v2)

Published 22 Mar 2022 in eess.SY, cs.RO, and cs.SY

Abstract: Connectivity in ground vehicles allows vehicles to share crucial vehicle data, such as vehicle acceleration, with each other. Using sensors such as cameras, radars and lidars, on the other hand, the intravehicular distance between a leader vehicle and a host vehicle can be detected, as well as the relative speed. Cooperative Adaptive Cruise Control (CACC) builds upon ground vehicle connectivity and sensor information to form convoys with automated car following. CACC can also be used to improve fuel economy and mobility performance of vehicles in the said convoy. In this paper, 3 car following algorithms for fuel economy of CAVs are presented. An Adaptive Cruise Control (ACC) algorithm was designed as the benchmark model for comparison. A Cooperative Adaptive Cruise Control (CACC) was designed, which uses lead vehicle acceleration received through V2V in car following. an Ecological Cooperative Adaptive Cruise Control (Eco-CACC) model was developed that takes the erratic lead vehicle acceleration as a disturbance to be attenuated. A High Level (HL) controller was designed for decision making when the lead vehicle was an erratic driver. Model-in-the-Loop (MIL) and Hardware-in-the-Loop (HIL) simulations were run to test these car following algorithms for fuel economy performance. The results show that the HL controller was able to attain a smooth speed profile that consumed less fuel through using CACC and Eco-CACC than its ACC counterpart when the lead vehicle was erratic.

Citations (3)

Summary

We haven't generated a summary for this paper yet.