Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Risk Assessment for Connected Vehicles under Stealthy Attacks on Vehicle-to-Vehicle Networks (2109.01553v1)

Published 3 Sep 2021 in eess.SY and cs.SY

Abstract: Cooperative Adaptive Cruise Control (CACC) is an autonomous vehicle-following technology that allows groups of vehicles on the highway to form in tightly-coupled platoons. This is accomplished by exchanging inter-vehicle data through Vehicle-to-Vehicle (V2V) wireless communication networks. CACC increases traffic throughput and safety, and decreases fuel consumption. However, the surge of vehicle connectivity has brought new security challenges as vehicular networks increasingly serve as new access points for adversaries trying to deteriorate the platooning performance or even cause collisions. In this manuscript, we propose a novel attack detection scheme that leverage real-time sensor/network data and physics-based mathematical models of vehicles in the platoon. Nevertheless, even the best detection scheme could lead to conservative detection results because of unavoidable modelling uncertainties, network effects (delays, quantization, communication dropouts), and noise. It is hard (often impossible) for any detector to distinguish between these different perturbation sources and actual attack signals. This enables adversaries to launch a range of attack strategies that can surpass the detection scheme by hiding within the system uncertainty. Here, we provide risk assessment tools (in terms of semidefinite programs) for Connected and Automated Vehicles (CAVs) to quantify the potential effect of attacks that remain hidden from the detector (referred here as \emph{stealthy attacks}). A numerical case-study is presented to illustrate the effectiveness of our methods.

Citations (6)

Summary

We haven't generated a summary for this paper yet.