Papers
Topics
Authors
Recent
Search
2000 character limit reached

Reinforcement-based frugal learning for satellite image change detection

Published 22 Mar 2022 in cs.CV | (2203.11564v1)

Abstract: In this paper, we introduce a novel interactive satellite image change detection algorithm based on active learning. The proposed approach is iterative and asks the user (oracle) questions about the targeted changes and according to the oracle's responses updates change detections. We consider a probabilistic framework which assigns to each unlabeled sample a relevance measure modeling how critical is that sample when training change detection functions. These relevance measures are obtained by minimizing an objective function mixing diversity, representativity and uncertainty. These criteria when combined allow exploring different data modes and also refining change detections. To further explore the potential of this objective function, we consider a reinforcement learning approach that finds the best combination of diversity, representativity and uncertainty, through active learning iterations, leading to better generalization as corroborated through experiments in interactive satellite image change detection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.