Papers
Topics
Authors
Recent
2000 character limit reached

Arc-disjoint hamiltonian paths in Cartesian products of directed cycles (2203.11017v2)

Published 21 Mar 2022 in math.CO and math.GR

Abstract: We show that if $C_1$ and $C_2$ are directed cycles (of length at least two), then the Cartesian product $C_1 \Box C_2$ has two arc-disjoint hamiltonian paths. (This answers a question asked by J. A. Gallian in 1985.) The same conclusion also holds for the Cartesian product of any four or more directed cycles (of length at least two), but some cases remain open for the Cartesian product of three directed cycles. We also discuss the existence of arc-disjoint hamiltonian paths in $2$-generated Cayley digraphs on (finite or infinite) abelian groups.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.