Papers
Topics
Authors
Recent
Search
2000 character limit reached

Domain Representative Keywords Selection: A Probabilistic Approach

Published 19 Mar 2022 in cs.CL and cs.IR | (2203.10365v2)

Abstract: We propose a probabilistic approach to select a subset of a \textit{target domain representative keywords} from a candidate set, contrasting with a context domain. Such a task is crucial for many downstream tasks in natural language processing. To contrast the target domain and the context domain, we adapt the \textit{two-component mixture model} concept to generate a distribution of candidate keywords. It provides more importance to the \textit{distinctive} keywords of the target domain than common keywords contrasting with the context domain. To support the \textit{representativeness} of the selected keywords towards the target domain, we introduce an \textit{optimization algorithm} for selecting the subset from the generated candidate distribution. We have shown that the optimization algorithm can be efficiently implemented with a near-optimal approximation guarantee. Finally, extensive experiments on multiple domains demonstrate the superiority of our approach over other baselines for the tasks of keyword summary generation and trending keywords selection.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.