Papers
Topics
Authors
Recent
Search
2000 character limit reached

Machine Learning for Encrypted Malicious Traffic Detection: Approaches, Datasets and Comparative Study

Published 17 Mar 2022 in cs.CR, cs.AI, and cs.LG | (2203.09332v1)

Abstract: As people's demand for personal privacy and data security becomes a priority, encrypted traffic has become mainstream in the cyber world. However, traffic encryption is also shielding malicious and illegal traffic introduced by adversaries, from being detected. This is especially so in the post-COVID-19 environment where malicious traffic encryption is growing rapidly. Common security solutions that rely on plain payload content analysis such as deep packet inspection are rendered useless. Thus, machine learning based approaches have become an important direction for encrypted malicious traffic detection. In this paper, we formulate a universal framework of machine learning based encrypted malicious traffic detection techniques and provided a systematic review. Furthermore, current research adopts different datasets to train their models due to the lack of well-recognized datasets and feature sets. As a result, their model performance cannot be compared and analyzed reliably. Therefore, in this paper, we analyse, process and combine datasets from 5 different sources to generate a comprehensive and fair dataset to aid future research in this field. On this basis, we also implement and compare 10 encrypted malicious traffic detection algorithms. We then discuss challenges and propose future directions of research.

Citations (62)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.