Papers
Topics
Authors
Recent
2000 character limit reached

Partitions, Multiple Zeta Values and the q-bracket

Published 17 Mar 2022 in math.NT and math.CO | (2203.09165v2)

Abstract: We provide a framework for relating certain q-series defined by sums over partitions to multiple zeta values. In particular, we introduce a space of polynomial functions on partitions for which the associated q-series are q-analogues of multiple zeta values. By explicitly describing the (regularized) multiple zeta values one obtains as $q\to 1$, we extend previous results known in this area. Using this together with the fact that other families of functions on partitions, such as shifted symmetric functions, are elements in our space will then give relations among (q-analogues of) multiple zeta values. Conversely, we will show that relations among multiple zeta values can be `lifted' to the world of functions on partitions, which provides new examples of functions where the associated q-series are quasimodular.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.