Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Radical support for multigraded ideals (2203.08732v1)

Published 16 Mar 2022 in math.AC

Abstract: Can one tell if an ideal is radical just by looking at the degrees of the generators? In general, this is hopeless. However, there are special collections of degrees in multigraded polynomial rings, with the property that any multigraded ideal generated by elements of those degrees is radical. We call such a collection of degrees a radical support. In this paper, we give a combinatorial characterization of radical supports. Our characterization is in terms of properties of cycles in an associated labelled graph. We also show that the notion of radical support is closely related to that of Cartwright-Sturmfels ideals. In fact, any ideal generated by multigraded generators whose multidegrees form a radical support is a Cartwright-Sturmfels ideal. Conversely, a collection of degrees such that any multigraded ideal generated by elements of those degrees is Cartwright-Sturmfels is a radical support.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube