Performance Comparison of Python Translators for a Multi-threaded CPU-bound Application (2203.08263v2)
Abstract: Currently, Python is one of the most widely used languages in various application areas. However, it has limitations when it comes to optimizing and parallelizing applications due to the nature of its official CPython interpreter, especially for CPU-bound applications. To solve this problem, several alternative translators have emerged, each with a different approach and its own cost-performance ratio. Due to the absence of comparative studies, we have carried out a performance comparison of these translators using N-Body as a case study (a well-known problem with high computational demand). The results obtained show that CPython and PyPy presented poor performance due to their limitations when it comes to parallelizing algorithms; while Numba and Cython achieved significantly higher performance, proving to be viable options to speed up numerical algorithms.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.