Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ARTEMIS: Attention-based Retrieval with Text-Explicit Matching and Implicit Similarity (2203.08101v2)

Published 15 Mar 2022 in cs.CV and cs.IR

Abstract: An intuitive way to search for images is to use queries composed of an example image and a complementary text. While the first provides rich and implicit context for the search, the latter explicitly calls for new traits, or specifies how some elements of the example image should be changed to retrieve the desired target image. Current approaches typically combine the features of each of the two elements of the query into a single representation, which can then be compared to the ones of the potential target images. Our work aims at shedding new light on the task by looking at it through the prism of two familiar and related frameworks: text-to-image and image-to-image retrieval. Taking inspiration from them, we exploit the specific relation of each query element with the targeted image and derive light-weight attention mechanisms which enable to mediate between the two complementary modalities. We validate our approach on several retrieval benchmarks, querying with images and their associated free-form text modifiers. Our method obtains state-of-the-art results without resorting to side information, multi-level features, heavy pre-training nor large architectures as in previous works.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Ginger Delmas (4 papers)
  2. Rafael Sampaio de Rezende (7 papers)
  3. Gabriela Csurka (31 papers)
  4. Diane Larlus (41 papers)
Citations (82)

Summary

We haven't generated a summary for this paper yet.