Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning for Optimal Control of a District Cooling Energy Plant

Published 14 Mar 2022 in eess.SY and cs.SY | (2203.07500v1)

Abstract: District cooling energy plants (DCEPs) consisting of chillers, cooling towers, and thermal energy storage (TES) systems consume a considerable amount of electricity. Optimizing the scheduling of the TES and chillers to take advantage of time-varying electricity price is a challenging optimal control problem. The classical method, model predictive control (MPC), requires solving a high dimensional mixed-integer nonlinear program (MINLP) because of the on/off actuation of the chillers and charging/discharging of TES, which are computationally challenging. RL is an attractive alternative to MPC: the real time control computation is a low-dimensional optimization problem that can be easily solved. However, the performance of an RL controller depends on many design choices. In this paper, we propose a Q-learning based reinforcement learning (RL) controller for this problem. Numerical simulation results show that the proposed RL controller is able to reduce energy cost over a rule-based baseline controller by approximately 8%, comparable to savings reported in the literature with MPC for similar DCEPs. We describe the design choices in the RL controller, including basis functions, reward function shaping, and learning algorithm parameters. Compared to existing work on RL for DCEPs, the proposed controller is designed for continuous state and actions spaces.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.