Bi-accessible and bipresentable 2-categories
Abstract: We develop a 2-dimensional version of accessibility and presentability compatible with the formalism of flat pseudofunctors. First we give prerequisites on the different notions of 2-dimensional colimits, filteredness and cofinality; in particular we show that sigma-filteredness and bifilteredness are actually equivalent in practice for our purposes. Then, we define bi-accessible and bipresentable 2-categories in terms of bicompact objects and bifiltered bicolimits. We then characterize them as categories of flat pseudofunctors. We also prove a bi-accessible right bi-adjoint functor theorem and deduce a 2-dimensional Gabriel-Ulmer duality relating small bilex 2-categories and finitely bipresentable 2-categories. Finally, we show that 2-categories of pseudo-algebras of bifinitary pseudomonads on Cat are finitely bipresentable, which in particular captures the case of Lex, the 2-category of small lex categories. Invoking the technology of lex-colimits, we prove further that several 2-categories arising in categorical logic (Reg, Ex, Coh, Ext, Adh, Pretop) are also finitely bipresentable.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.