Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting local earthquakes via fiber-optic cables in telecommunication conduits under Stanford University campus using deep learning (2203.05932v2)

Published 11 Mar 2022 in physics.geo-ph

Abstract: With fiber-optic seismic acquisition development, continuous dense seismic monitoring is becoming increasingly more accessible. Repurposing fiber cables in telecommunication conduits makes it possible to run seismic studies at low cost, even in locations where traditional seismometers are not easily installed, such as in urban areas. However, due to the large volume of continuous streaming data, data collected in such a manner will go to waste unless we significantly automate the processing workflow. We train a convolutional neural network (CNN) for earthquake detection using data acquired over three years by fiber cables in telecommunication conduits under Stanford University campus. We demonstrate that fiber-optic systems can effectively complement sparse seismometer networks to detect local earthquakes. The CNN allows for reliable earthquake detection despite a low signal-to-noise ratio and even detects small-amplitude previously-uncataloged events.

Summary

We haven't generated a summary for this paper yet.