Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear Quadratic Mean-Field Games with Communication Constraints (2203.05686v2)

Published 11 Mar 2022 in eess.SY, cs.MA, cs.SY, and math.OC

Abstract: In this paper, we study a large population game with heterogeneous dynamics and cost functions solving a consensus problem. Moreover, the agents have communication constraints which appear as: (1) an Additive-White Gaussian Noise (AWGN) channel, and (2) asynchronous data transmission via a fixed scheduling policy. Since the complexity of solving the game increases with the number of agents, we use the Mean-Field Game paradigm to solve it. Under standard assumptions on the information structure of the agents, we prove that the control of the agent in the MFG setting is free of the dual effect. This allows us to obtain an equilibrium control policy for the generic agent, which is a function of only the local observation of the agent. Furthermore, the equilibrium mean-field trajectory is shown to follow linear dynamics, hence making it computable. We show that in the finite population game, the equilibrium control policy prescribed by the MFG analysis constitutes an $\epsilon$-Nash equilibrium, where $\epsilon$ tends to zero as the number of agents goes to infinity. The paper is concluded with simulations demonstrating the performance of the equilibrium control policy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.