Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discrete-time average-cost mean-field games on Polish spaces (1908.08793v1)

Published 22 Aug 2019 in math.OC and cs.MA

Abstract: In stochastic dynamic games, when the number of players is sufficiently large and the interactions between agents depend on empirical state distribution, one way to approximate the original game is to introduce infinite-population limit of the problem. In the infinite population limit, a generic agent is faced with a \emph{so-called} mean-field game. In this paper, we study discrete-time mean-field games with average-cost criteria. Using average cost optimality equation and Kakutani's fixed point theorem, we establish the existence of Nash equilibria for mean-field games under drift and minorization conditions on the dynamics of each agent. Then, we show that the equilibrium policy in the mean-field game, when adopted by each agent, is an approximate Nash equilibrium for the corresponding finite-agent game with sufficiently many agents.

Citations (10)

Summary

We haven't generated a summary for this paper yet.